

International Ayurvedic Medical Journal, (ISSN: 2320 5091) (May, 2017) 5 (5)

COMPARATIVE PHARMACEUTICO ANALYTICAL STUDY OF *MADHUTAILI-*KA BASTI FORMULATION PREPARED BY CLASSICAL AND MODIFIED ME-THODS

C.S.Shruthi¹, RenjalPrabhakaraUpadhyaya², K.Sujatha³

¹Final Year PG Scholar, ²Professor and HOD, ³Professor and HOD,

^{1,2}Department of Rasashashtra and Bhaishajya Kalpana, SDM College of Ayurveda, Udupi, Karnataka, India

Email: dr.shruthicheemullu346@gmail.com

ABSTRACT

Context: The formulation of MadhutailikaBasti comprises of Madhu (honey), Lavana (salt), Taila(oil), Kalka(paste) & Quatha (decoction). These ingredients are not easily miscible with each other. As per classics they are made miscible by adding the ingredients in sequence and mixing with the help of churner. But in large scale work it is replaced by mixer or edge runner mill. Aim and objectives: To do the preparation of Madhutailikabasti formulation by using classical and modified methods. To do physico-chemical analysis and stability study of Madhutailikabasti formulation prepared by classical and modified methods and to compare their results. Methodology: 6 samples of Madhutailikabasti formulation were prepared and subjected for physico-chemical and stability study. Results: Physico chemical analysis show that better rate of absorption in samples prepared with classical method than modified methods. Based on rate of sedimentation it was observed that classical method of Madhutailikabasti formulation is having more stability than modified methods. Conclusion: Classical method of preparation of Madhutailikabasti with serial order of mixing the ingredients using churner is more stable and would be better absorbed compared to other modified methods.

Keywords: MadhutailikaBasti, Classical method, Modified method, Stability study.

³Department of Rasashashtra and Bhaishajya Kalpana, SDM Institute of Ayurveda, Bengaluru, Karnataka, India

'MadhutailikaBasti', a type of 'AasthapanaBasti' also termed as 'NiruhaBasti'. The formulation of *MadhutailikaBasti* comprises of Madhu, Lavana, Taila, Kalka & Quatha¹. These ingredients are not easily miscible with each other. But to get the optimum therapeutic action from the formulation homogeneous mixture of ingredients is necessary. References regarding serial order of mixing the ingredients are available in classics as madhu and saindhava followed by taila, then kalka after that kashaya². Homogeneity of final mixture is assessed with certain features known as yojithaniruhalakshanas. They are, nonspreading, not remain smeared, not retaining its markings when it is placed on the palm ³.Importance towards methodology of mixing might be to maintain these features i.e. Physical stability of the mixture for a longer duration. Mannual method of mixing is adopted during the addition of each ingredient to get the homogeneous mixture. As this process needs creation of vigorous shear force within the mass material, usage of sophisticated equipment for mixing may make the preparation processing easier and convenient, especially in large scale work. Hence the study was conducted on Madhutailika-Basti formulation prepared through classical and modified methods. Samples were subjected for physico chemical analysis and stability study.

AIMS &OBJECTIVES:

a) To do the preparation of *Madhutailika-Basti* formulation by using classical and modified methods.

- To do physico-chemical analysis and stability study of *Madhutailikabasti* formulation prepared by classical and modified methods.
- c) To compare the results of physicochemical analysis and stability study of *MadhutailikaBasti* formulation prepared by classical and modified methods.

MATERIALS AND METHODS:

Source of Data:

- a) Medicinal source:
- Raw drugs required for preparation collected from SDM Ayurveda Pharmacy Udupi
- Preparation of MadhutailikaBasti formulation was carried out in–Rasashastra and Bhaishajyakalpana Practical Hall, SDM college of Ayurveda Udupi.
- b) Analytical source:
- Formulation was subjected to physicochemical analysis and stability study in SDM Centre for research in Ayurveda and Allied sciences Udupi.

METHODOLOGY:

In the present study 6 samples of *Madhutai-likaBasti* are prepared with same ingredients taken in same quantity but with different methods.

Reference for the study is taken from *Bha-vaprakasha*⁴, which include following ingredients:

- *Madhu*: 50ml
- Saindhavalavana: 3.125g
- *Tilataila*(*Sesamumindicum DC*): 50ml

- Shathapushpakalka (AnethumsowaKurz): 6.25g
- Erandamulaquatha (Ricinuscommunis Linn.): 200ml

Preparation of *MadhutailikaBasti* formulation with following instruments as mentioned below:

- Sample 1: Mixing the ingredients in sequence using mixer
- Sample 2: Mixing the ingredients all together using mixer
- Sample 3: Mixing the ingredients all together using edge runner mill.
- Sample 4: Mixing the ingredients in sequence using edge runner mill.
- Sample 5:Mixing the ingredients in sequence using churner
- Sample 6:Mixing the ingredients all together using churner

Among the above samples 5th and 6th samples were prepared using classical method while first 4 samples are the modified methods.

Modified methods:

Sample 1: Mixing the ingredients in sequence using mixer

Procedure involved:

- Initially *madhu* and *saindhavalavana* are taken in the mixer.
- Mixing is continued until *lavana* is completely dissolved.
- Then *tilataila* is added and again mixed for specific time period. Here oil layer should become minute globules, mixture should become homogeneous.

- It is followed by adding of *shatapushpa-kalka*. Mixing is done so that *kalka* particles remain uniformly distributed and do not settle down at the base of the vessel.
- At last *erandamulakwatha* is added, mixing is continued until it properly mixes with oil globules and homogeneous features are seen.
- Homogeneity of final mixture is assessed with certain features under the heading *su-yojithaniruhalakshana*.
- Finally quantity of *basti* formulation is measured.

2nd Sample: Mixing the ingredients all together using mixer

Procedure involved:

- All ingredients are taken together in the mixer jar.
- Mixer is turned on until all the ingredients get properly mixed with each other. i.e There is no sedimentation of *kalkadravya*, *saindhava* is properly dissolved, *taila* and *kashaya* should not be a separate layer instead they should look like a single entity.
- Finally mixing is continued until *su-yojithaniruhalakshanas* are seen.
- At last quantity of *basti* formulation is measured.

Sample 3: Mixing the ingredients all together using edge runner mill Procedure involved:

• All ingredients are taken together in the edge runner mill and mixed until *su-yojithaniruhalakshanas* are seen.

Sample 4: Mixing the ingredients in sequence using edge runner mill

Procedure involved:

 Ingredients are mixed in sequence as mentioned in classics until it become homogeneous.

Classical method:

Sample 5: Mixing the ingredients in sequence using churner

Procedure involved:

- Initially ingredients like *madhu* and *lavana* are taken in a steel vessel and mixed until lavana dissolves completely.
- Then *tilataila* is added and churned until it gets distributed into fine globules.
- It is followed by *kalka* which is churned until its particle gets uniformly suspended.
- At last kashaya is added and churned until *su-yojithaniruhalakshana* are seen.

Sample 6: Mixing the ingredients all together using churner

Procedure involved

• All ingredients are added together and churned until *su-yojithaniruhalakshana* are seen.

Features of different mixing methods which were observed is explained in table no.1

The parameters used for the analysis has been mentioned below:

A. Organoleptic Characteristics:

- Colour
- Taste
- Smell
- Consistency

B. Physico-chemical analysis

- Acid value
- Saponification value
- Iodine value
- Refractive Index at 25^oC
- Specific Gravity
- Viscosity
- p^H

C. Physical stability test

- Dilution Test
- Conductivity Test
- Dye Test

RESULTS:

A. Organoleptic Characteristics:

The drug is examined by means of the sense organs and the difference in the drugs which are observable at a macroscopic level is appreciated and listed in table no.2

B.Physico-chemical Analysis:

Results of physico-chemical analysis are enlisted in table no.3.

For comparison and better understanding few tests were done to *taila* and *kashaya* along with samples.

C.Physical stability test:

There are two types of emulsions namely O/W type and W/O type. Since both the emulsions are similar in appearance it is very difficult to differentiate them with naked eye. They cannot be identified with single tests hence confirmed with 2-3 tests. It mainly includes dilution test ⁵, conductivity test ⁶ and dye-solubility test ⁷.

Sedimentation rate:

Stability is also assessed with rate of sedimentation.

Results of Physical stability test:

Dilution test, conductivity test and dye test are used for identification of type of emulsion whether it is oil in water type (O/W) or water in oil type (W/O). In oil in water type emulsion the oil is the dispersed phase whereas water is the continuous phase .This type is generally preferred for internal use because the unpleasant taste and odour is masked by emulsification and oil being in finely dispersed state is more quickly assimilated in the body⁸.In water in oil type emulsion the water is the dispersed phase whereas oil is the continuous phase. These types of emulsions are mainly used externally as lotions or creams.

Dilution test:

Dilution test was carried out on all 6 samples; they are identified as O/W type of emulsion.

Conductivity test:

Conductivity test was carried out on *taila* and *kashaya* which were considered as standard. *Kashaya* being water media easily conducts electricity while *taila*did not allow the electricity to pass through it. Later the test was done on 6 samples and all of them conducted electricity. So it was identified as O/W type of emulsion.

Dye test:

Dye test was initially done on *taila* and *kashaya* which were considered as standard. On treating Amaranth (water soluble dye) with *taila* drop and when observed under microscope continuous phase appeared colorless and on adding Sudan III (oil soluble dye) with *taila* it showed continuous phase red. On adding Amaranth to the *kashaya* and observing under microscope showed conti-

nuous phase red and it was colourless with Sudan III. Later 6 samples were treated with Amaranth and Sudan III Dye separately and observed under microscope. All the samples gave continuous phase red with Amaranth and droplets appeared colorless, continuous phase colorless with Sudan III and droplets showing reddish pink colour. All were categorized as O/W type emulsion.

Rate of sedimentation:

For a *basti* formulation to yield better result the ingredients should be a homogeneous mixture and a single entity. If all the ingredients getting separated then the purpose will not be served hence rate of sedimentation is given importance.

Based on onset and rate of separation along with total time taken for separation, samples can be rated from less stable to highly stable sample as mentioned in table no. 4

DISCUSSION

- Mechanism adopted having a great influence on mixing of immiscible ingredients. This can be understood by the time taken by each sample to get mixed with each other.
- Merits and demerits of method adopted for the study is described in table no.5
- Organoleptic examination reveal difference in colour, taste, consistency among all samples which indicate some chemical changes in each method while smell of all samples being the same.
- Acid value⁹ is increased in sample 6th, followed by 2nd, 1st, 3rd, 5th and 4thsample. It indicate short shelf life in 6th sample followed by other samples. Hence early chances of rancidity in 6th

- sample followed by 2nd sample,1st sample, 3rd sample,5th sample,4th sample with delayed chances of rancidity.
- Highest rate of absorption to lowest rate is seen among samples in following order: sample 6th followed by 1st sample, 2nd sample, 5th sample, 3rd sample, and last 4th sample which is indicated by saponification value.
- Level of unsaturation is indicated by iodine value which is more in 4th sample followed by 6th sample, 5th sample, 1st sample, 3rd sample, least value in 2nd sample
- 4th sample is said be more viscous, followed by 5th sample, 2nd sample,1st sample, 6th sample and 3rd sample in decreasing order respectively based on viscosity value.
- All the samples are identified as O/W type of Emulsion.
- Based on rate of sedimentation it can be understood that classical method of MadhutailikaBasti formulation is having more stability than modified methods.
- Better action will be seen with the formulation which is prepared using churner than mixer or edge runner mill.

CONCLUSION

After comparing results of physico chemical analysis and stability study it was concluded that classical method of preparation of *Madhutailikabasti* with serial order of mixing the ingredients using churner is more stable and would be better absorbed compared to other modified methods

REFERENCES

- 1. Sri Brahma Shankara Mishra and Sri Rupalalji Vaishya, Bhaava Praakasha, Bhava Mishra with Vidyotini Hindi vyakya, Poorvakhanda (First Part), Panchakarmavidhi Prakarana, 5Th chapter, verse no. 166-167,11thedition,Varanasi,Chaukamba Sanskrit Bhavan, 2010, Pg No.879.
- Vaidya Yadavaji TrikamjiAcharya, Susrutha Samhitha, Acharya Susrutha, Nibandhasangraha Commentary by Sri Dalhanacharya and Nyaya Chandrika Commentary by Sri Gayadasacharya, Chikitsasthana, 38th chapters, verse no.38/33-36, Varanasi, Chaukamba Sanskrit Sansthana, 2013, Page no 547.
- 3. Samshodhankarta Shri Vaidya Shankarlalji Jain, VangaSenaSamhitha, Vanga-Sena, Hindi Commentary by KavirajShri Shaaligramji Vaishya, Basti Karma adhikara,verse no.142, Mumbai, Khemraj-Krishnadas Prakashan, 2003, Pg No 996.
- 4. Sri Brahma Shankara Mishra and Sri Rupalalji Vaishya, Bhaava Praakasha, Bhava Mishra with Vidyotini Hindi vyakya, Poorvakhanda (First Part), Panchakarmavidhi Prakarana, 5Th chapter,11thedition,Varanasi,Chaukamba Sanskrit Bhavan, 2010, page.no.879.
- Ashok K. Gupta, Introduction to Pharmaceutics-2, 8th chapter-Emulsion, 4thedition,New Delhi, CBS Publishers and Distributers PVT LTD, edition in 2000 and Reprint 2015, Pg no 161.
- 6. Ashok K. Gupta, Introduction to Pharmaceutics-2, 8th chapter- Emulsion, 4thedition,New Delhi, CBS Publishers and Distributers PVT LTD, edition in 2000 and Reprint 2015, Pg no 162.

- 7. Ashok K. Gupta, Introduction to Pharmaceutics-2, 8th chapter- Emulsion, 3rd edition, New Delhi, CBS Publishers and Distributers PVT LTD, edition in 2000 and Reprint 2015, Pg no 162.
- 8. Ashok K. Gupta, Introduction to Pharmaceutics-2, 8th chapter- Emulsion,
- 4thedition,New Delhi, CBS Publishers and Distributers PVT LTD, edition in 2000 and Reprint 2015, Pg no 161.
- 9. Dr. D.R. Lohar, Protocol for testing of Ayurveda, Siddha And Unani medicines, Government of India, appendix 3, Ghaziabad, Page.no.126

Table 1: Time taken by different samples to get mixed

Samples	Time consumed for the ingredients to get mixed						
	Madhu+	+tilataila	+shatapushpa	+Eranda	Mula	Total	time
	Lavana		kalka	juatha		taken	
1 st sample	6 min	2 min	5 min	2 min		15min	
(mixer –serial order)							
2 nd sample							
(mixer-all together)	-				13min		
3 rd sample							
(edge runner mill -all to-				40min			
gether)		-					
4 th sample	11 min	13 min	4 min		20min	48min	
(edge runner mill- serial							
order)							
a.							
5 th sample	15 min	15 min	11 min		10min	51min	
(churner- serial order)							
6 th sample							
(churner-all together)	- 66n			66min			

Table 2: Organoleptic Characteristics of all samples

Features	1 st sample	2 nd sample	3 rd sample	4 th sample	5 th sample	6 th sample
Colour	Dull brown	Dull brown	Dark brown	Dull brown	Dark brown	Dark brown
Taste	Lavana	Kashaya	Madhura	Madhura	Madhura	Lavana
	kashaya	lavana	Lavana	Lavana	Lavana	Madhura
			Kashaya	Kashaya	Kashaya	Kashaya
Smell	Taila	Taila	Taila	Taila	Taila	Taila
	gandha	gandha	gandha	gandha	gandha	gandha
Consistency	Viscous	Moderate	Less viscous	Less viscous	Moderate	Moderate
	liquid	viscous liquid	liquid	liquid	viscous liquid	viscous liquid

Table 3: Results of standardization parameters

Samples	Parameter						
	Acid value	Saponifica	Iodine	Refractive	Specific	Viscosity	pН
		-tion value	value	index	gravity		
I	3.29	78.30	16.16	1.38717	1.1171	7.0740	6.0
II	3.73	76.22	11.43	1.3886	1.1258	9.7898	5.0
III	2.7855	71.22	13.30	1.3895	1.1245	5.4127	5.0
IV	2.6562	61.5601	44.6132	1.38606	1.1191	11.7834	6.0
V	2.7690	71.8168	22.51	1.38830	1.1406	10.8502	5.0
VI	4.2357	91.5578	23.7473	1.39794	1.1428	6.3360	6.0
Taila	1.0989	21.5980	45.4567	-	0.9422	75.7795	6.0
Kashaya	-	-	-	-	1.0286	1.2083	6.8

Table 4: Rate of sedimentation

Samples	Sedimentation Rate	Stability	
3 rd sample	Quick onset and rapid separation	Less stable/not stable	
4 th sample	Rapid onset and rapid separation	Less stable/not stable	
2 nd sample	Mild onset but rapid separation	Less stable/not stable	
1 st sample	Slow onset, mild rate of separation	Stable	
6 th sample	Mild rate of onset, mild separation	Stable	
5 th sample	Very slow onset, very slow separation	Highly stable	

Table 5:Merits and demerits of methods adopted

Method	Merits	Demerits	
Mixer method:	1.Easy to prepare2.Requires less time	1.Early separation of ingredients	
Edge runnermill method	1.Easy to prepare	1Separation is rapid due to positive and negative mixture mechanism	
		2.More time is required to prepare	
Churnermethod	1.Material remain mixed for long time	2.Depends on manual pressure	

Source of Support: Nil

Conflict Of Interest: None Declared

How to cite this URL: C.S.Shruthi Et Al: Comparative Pharmaceutico Analytical Study Of Madhutailika Basti Formulation Prepared By Classical And Modified Methods. International Ayurvedic Medical Journal {online} 2017 {cited May, 2017} Available from: http://www.iamj.in/posts/images/upload/1549_1556.pdf