ASWAGANDHA - A CRITICAL REVIEW

Remya V¹, Ansary P. Y², Sara Monsy Oommen³

Department of Dravyagunavijnan, Govt. Ayurveda College, Tripunithura, Cochin 682301, Kerala, India

Email: remyavmenon@gmail.com

ABSTRACT

Objective: The objective of this paper is to compile the information on Aswagandha from various Ayurvedic textbooks, research papers and reports. Design: This review is in a descriptive format and consists of all relevant publications on Aswagandha that were identified through an organized search in major computerized medical databases and Ayurvedic texts. The therapeutic properties are compiled based on the useful part and important chemical constituents. Results: Studies indicate that Aswagandha possesses properties such as anti-inflammatory, anti-tumor, anti-stress, antioxidant, immunomodulatory, hepatoprotective, anti-parkinsonism, hemopoetic effects. It also exerts a positive influence on the endocrine, cardiopulmonary, and central nervous systems. Toxicity studies reveal that Aswagandha appears to be a safe compound. Conclusion: Preliminary studies have established Aswagandha, Withania somnifera exhibit a range of therapeutic effects with little or no associated toxicity. These results are quite inspiring and indicated the need of further extensive studies on this herb to confirm these properties and other potential therapeutic effects.

Keywords: Aswagandha, Withania somnifera, anti-inflammatory, antiparkinsonism, antioxidant, anti-stress.

INTRODUCTION

Nature acts as a major repository for new and novel therapeutics¹. According to the World Health Organization (WHO) report, about 4 billion people of the world presently use herbal medicines for their primary healthcare as an alternative system of medicine⁵. Ayurvedic classics have a unique source of medicinal plants and immense traditional knowledge of herbal medicine for the treatment of various diseases³. Aswagandha is an important drug mentioned in the Ayurvedic literature with enormous medicinal value. The roots of the plant are described with rasayana karma, which are proved to promote health and longevity by enhancing the defense mechanism, slowing the ageing, rejuvenating the body in debilitated conditions and by creating a sense of mental wellbeing⁴. Aswagandha is also mentioned in Samhitas such as Charaka Samhita, Susruta Samhita and Nigantus viz., Astanga Nigantu, Dhawanthari Nigantu, Sodhala Nigantu on their therapeutic applications. The objective of this paper is to review the available literature on Aswagandha (Withania somnifera) which have a proven therapeutic potential. Present study compiled the ayurvedic literatures, taxonomical features, phytochemistry, and pharmacological properties of this drug.
Aswagandha

Basonym
Aswagandha- aswagandhasyevagandho asyaadhavaaswasyevagandhotsaah: (kaamavega:) sevanenasa 5
Having smell like that of horse and promotes sexual potency like that of horse.

Main synonyms and Interpretation
Asakandha- aswasyamedramivakandamoolasya 5 - Root resembles penis of aswa; Aswaavarohaka: aswagandhaavruksha: 5 - Having smell like that of horse and promotes sexual potency like that of horse; Kanchuka- kaci-pratibandhanayo: 5 - Retains semen; Kaamaroopini- kaamammanonjamroopamasyatasya 6 - Promotes complexion; Gandhapatri- gandhayuktapatramasya 5 - Leaves having smell like that of horse; Putradapatramgardhamadadatisevanenaiti 5 - Increases the potency and quality of sukrathereby increasing the chance of progeny; Balada- balamdadati | poshtikebaladaasmruta 5 - Promotes strength; Vrusha- prajananasaamarthyam 5 - Promotes sexual potency; Hayahwaya- haya: hayagandhoasyataya aswa: | aswagandhaayam 5 - It is known by the title of horsebecause of having the smell of horse.

Vargeekarana
Charaka Samhita- Balya, Brumhaneeya, Madurasimhadi; Susrutha Samhita- Urdwabhagahara 8; Bhavprakasa Nigantu- Gudooychadi varga 9; Kaiyadeva Nigantu- Oshadi varga 10; Raja Nigantu- Satahvadi varga 11; Madanapala Nigantu- Abhayadi varga 12; Dhanvanthari Nigantu- Gudooychadi varga 13; Saligrama Nigantu- Gudooychadi varga 14; Sodala Nigantu- Gudooychadi varga 15; Nigantu Adarsh- Kantakaryadi varga 16; Priya Nigantu- Satapushpadi varga 17

Taxonomy 19
Order: Tubiflorae; Family: Solanaceae; Genus: Withania; Species: somnifera
This plant is distributed throughout the dry areas of India, Balochistan, Ceylon- Mediterranea regions, Canaries and Cape of Good Hope. It is a perennial branched erect under shrub of 0.3-1.5 m height. Stem is erect and branches are terrete, herbaceous above, woody below.

Part Used- Root, Leaves, seeds 20
Dosage- 3-6 g of the drug in powder form 18

Important phytochemical constituents
Root- The roots are reported to contain amino acids, alkaloids, volatile oil, steroids, starch, reducing sugars, hentriacontane, dulcitol, glycosides, withanol, an acid, and a neutral compound 21; Steroidal alkaloids-Roots contain steroidal alkaloids with variety of therapeutic efficacy such as isopelletierine, anaferine, cuscohygrine, anahygrine, tropine, pseudotropine, anaferine, isopelletierine, withananine, withananinine, pseudo-withanine, somnine, sommferine, sommferinine (Basic alkaloids), 3-tropyltigloate (Neutral alkaloids), withanine, withasomnine, and visamine 21; Steroidal lactones (withanolides)-withanolides, withaferins 22; Free amino acids- aspartic acid, glycine, tyrosine, alanine, proline, tryptophan, glutamic acid, and cystine 23; Others: resin, fat, Iron, coloring matters, a reducing sugar, phytosterol, Ipuranol and a mixture of saturated and unsaturated acids.

Leaves- Contains 12 Withanolides, 5 unidentified alkaloids, many free amino acids, chlorogenic acid, glycosides, glucose, condensed tannins, and flavonoids 23. Withanolides—a group of C28 steroids characterized by a 6-membered lactone ring in the 9-carbon atom side chain. Withanolides— Withaferin A[(4β,5β,6β,22R)-4,27-Dihydroxy-5,6:22,26diepoxyergosta-2,24-diene-1,26-dione] 23; Fruits- The green berries contain amino acids, a proteolytic enzyme, condensed tannins, and flavonoids. They have a high fraction of free amino acids which include proline, valine, tyrosine, alanine, glycine, hydroxyproline, aspartic acid, glutamic acid, cystine and cysteine 23; Shoots- The tender shoots are abundant in crude protein, calcium and phosphorous, and are not fibrous. They are reported to contain scopoletin 23.

Rasa panchaka 9, 10, 11,12,13, 16, 17
The Ayurvedic pharmacological properties of root were explained in the different Ayurvedic texts is described in the table 1
Specific action (mentioned in Sarngadhara and Charaka samhita)

Sarngadhara- Sukrala

Charaka- Balya, Brumhaneeya, Madura skanda

Amayigaprayoga with details of administration

- In *Granthi*, *Ganda*, *Apaci*, the external application of paste of aswagandha is mentioned.
- In *Swasa*, *Kshara* is advised to be taken with honey and ghee.
- In *Granthivisarpa*, the part is advised to be applied with warm paste of aswagandha.
- In *Vatavyadhi*, ghruita prepared with kashaya, kalka of Aswagandha along with ksheera is advised for vatavyadhi, mamsavardhana.
- In *Vandyatwa*, Aswagandha kashaya added with milk and ghruita is advised to be taken internally.
- In *Karsya*, Aswagadhachoorna is advised to be given with milk or ghruutaortaila or sukhambu for one month.
- In *Nidranasa* choorna of Aswagandha is advised to be given with sita and sarpi.
- In *Kshaya*, Aswagandhachoorna, pippali, sita in equal quantities is advised to be taken internally with ghruita and madhu.

Important formulations in each Kalpana

Important formulations in the form of kashaya, choorna, gulika etc of Aswagandha are described below

- **Kashaya**-MaharasnadiKashaya,
- AswagandadiKashayam, Amrutadi Kashayam (Vatikaootrakruhrchra; Choorna-Aswagandhadichoorna, Rasnadichoorna; Gulika-Yogarajaguggulu; Lehyam- Jeerakadilehyam; Asava- Lavangasava (1 pala, prameha, dhatukshaya); Tailam- Astadasasatikaprasarnitailam (3 pala), Ekkadasasatikaprasarnitailam (3 pala), Trisatiprasarinitaila (100 pala, Vataroga, pumsatwa), Saptasatikaprasarinitaila (100 pala, vividhavataroga)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rasa</td>
<td>Tikta, Kashaya</td>
<td>Katu, tikta</td>
<td>Tikta</td>
<td>Kinchitikutu, tuvara</td>
<td>Kashaya, tikta</td>
<td>Tikta, kashaya</td>
<td>Tikta, kashaya</td>
</tr>
<tr>
<td>Guna</td>
<td>Laghu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veerya</td>
<td>Usna</td>
<td>Usna</td>
<td>Usna</td>
<td>Usna</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vipaka</td>
<td>Vatakaphahara, balya, rasayani, atisukraka, sopha, switra, kshayahar a</td>
<td>Vatahara, balya, kasa, swasa, kshayavrana hara</td>
<td>Vataha ra, balya, vrushy, rasayan i</td>
<td>Jaravyadhinasaka, dhatuvrudhikara, balada, kantipurada, sareerapustthkari, vrushya, vatakaphahara, swasa, kasa, vrana, swetakuhta, visha, krumi, sopha, kshata, kshaya, kantuhara</td>
<td>Vatakaphahara, visha, vrana, kshayahar a, Kanti, veerya, balapradra</td>
<td>Vatakaphahara, balya, rasayani, atisukraka, sopha, switra, kshayahar a, kshaya, kshaya</td>
<td></td>
</tr>
</tbody>
</table>

Table. 1: The Ayurvedic pharmacological properties of root explained in the different Ayurvedic texts
Mahanarayanataila (1/2 pala, vataroga), Puvankuruntalataadiyanakenna (2 kazhanju, two times, swasa, jwara), Prabhanjanavimardhanataila (2 pala, Asetivatarogansudarunan), Balaaswagandhalakshaditaila (Subarajwara, unmada), Mashaditaila (1 karsa, vataroga, pakshaghata, ardita), Mahamashaditaila (Pakshaghata, hanustambha), Lakshadi (Subarajwara, kshaya, unmada), Vilwampachotyadienna (Subarajwaraapaha).

Kushtaditaila (internal adm, urustambha)

Ghrutam - Aswagandhadighrutam, Mahakushmandaghruta, Vastyaamayanthakaghruta, varahyadighruta, Sasavasadighruta, Sarvaamayanthakaghruta, Sukumaramghruta; Taila- Maharayanataila (Aswaganda- 10 pala, Vataroga), Lakshaditailam (Aswaganda- 1 karsha), Satavaritailam (1/2 palam, Vandyatwa).

Substitutes and Adulterants
Classical substitute for Kakoli and Ksheerakakoli.

Research works
Toxicity studies
In acute toxicity studies, oral LD50 of W.somnifera was found to be >2000mg/kg body weight. The 14th day observation and weekly bodyweight assessment revealed no toxic effects in rats. There was no abnormal behaviour shown by the rats during these 14 days of observations. In the sub-acute toxicity study, all the animals survived 28 days. Physical and behavioural examination did not reveal any treatment related adverse effects at the dose of 500mg/kg/day, 1000mg/kg/day and 2000 mg/kg/day.

In- vitro studies
Root
Antibiotic activity
W. somnifera revealed the antibacterial activity against Bacillus subtilis, E. Coli, P. Flourescens, E. Aerogens, K.pneumoniae, R.planticolaand A. Tumefaciens.

Anti-tumour Activity
The ethanolic extract of root showed invitro cytotoxicity against five human cancer cell lines such as PC-3, DU-145 (Prostrate), HCT-15 (colon), A-549 (lung), IMR-32 (neuroblastoma).

Antioxidant and Free Radical Scavenging Activity
Antioxidant activity was evaluated by DPPH radical scavenging assay, ferrous reducing power, nitric oxide radical scavenging activity, Fe²⁺ chelating activity assay, superoxide anion and hydrogen peroxide radical scavenging activity. The result of the study suggested that indigenous root showed more activity than the exported root.

Antimycobacterial
When tested by MIC method, aqueous extracts of different concentrations of W. somnifera revealed consistent reduction in activity against M.TB. It was observed that the increase in anti-mycobacterial activity by W. somnifera was dose dependent and the increase in anti-mycobacterial activity was significant in 3rd day and in which extends up to the 7th day. The highest antibacterial activity of M.TB was found in W.somnifera (1.0 mg/mL) which is 64.47% inhibition and least activity inhibits in lower dose of 0.01 mg/mL which observed 17.88%.

In- Vivo studies
Root
Anti-inflammatory activity
The effect of W. somnifera root powder with a dosage of 1000 mg/ kg, orally daily for 15 days revealed a reduction in the paw swelling and bony degenerative changes in Freund’s adjuvant-induced arthritis in rats by radiological examination. The reductions were better than those produced by the reference drug, hydrocortisone (15 mg/kg).

Antitumour activity
Withaferin A, withanolide D & E exhibited significant antitumour activity in vivo against Ehrlich ascites carcinoma, Sarcoma 180, Sarcoma Black (SBL), and E 0771 mammary adenocarcinoma in mice with doses 10, 12, 15 mg/kg body-weight. Growth of Ehrlich ascites carcinoma was completely arrested in more than half the mice which survived for 100 days without the evidence of growth of the tumour.

Immunomodulatory Activity
Aswagandha showed a significant modulation of immune reactivity in animal models. Root extract of W.somnifera was found to prevent myelo-suppression in mice treated with three immunosuppressive drugs viz. cyclophosphamide, azathioprin, and prednisolone.
Treatment with Aswagandha was found to significantly increase Hb concentration, RBC count, platelet count, and body weight in mice. Administration of Aswagandha extract was found to significantly reduce leucopenia induced by cyclophosphamide (CTX) treatment42.

Anti-stress/Adaptogenic Activity

Anti-stress effect of *W. somnifera* was studied in rats using cold water swimming stress test. Root powder was given in the dosage of 100 mg/kg orally as an aqueous suspension every day for consecutive seven days before the swimming test in water at 10°C. The swimming test also showed increase in total swimming time, indicating better stress tolerance in rats. The alcohol extract of *W. somnifera* (100 mg/kg, two times daily orally on day 1, 4 or 7) lessened stress-induced increases in blood urea nitrogen levels, blood lactic acid, and adrenal hypertrophy, but did not affect changes in thymus weight and hyperglycemia in rats43.

Anticonvulsant Activity

Administration of Aswagandha root extract was found to lessen jerks and clonus in 70% and 10% animals respectively with a dosage of 100mg/kg and reduction was evident from EEG wave pattern. The protective effect of Aswagandha extract in convulsions has been stated to involve GABAergic mediation44.

Hepatoprotective Activity

Withaferin A at the dose of 10mg/kg exhibited significant hepatoprotective effect against CCl4-induced hepatotoxicity in rats45.

Neuropharmacological Activity

The root extract of *W. Somnifera* showed prolonged hypotensive, bradycardiac and respiratory stimulant activities in dogs. The total alkaloids produced a calming and a gentle depressant effect (tranquillizer-sedative type) on the CNS in several experimental animals46. The drug elevated the level of acetylcholine receptor capability in the cortical muscarinic indicates the cognition-enhancing and memory improving effects of extract from *W. Somnifera*47.

Hypolipidemic effect

W. somnifera root powder decreased total lipids, cholesterol and triglycerides in hypercholesteremic animals. It also significantly increased plasma HDL-cholesterol levels, HMG-CoA reductase activity and bile acid content of liver. A comparable trend also stated in bile acid, cholesterol and neutral sterol excretion in the hypercholesteremic animals with WS administration48.

Antiparkinsonism effect

Rats were previously treated with the *W. Somnifera* extract orally for 3 weeks. On day 21, 6OHDA(6-Hydroxy dopamine) was infused into the right striatum .Three weeks after 6-OHDA injections, rats were evaluated for neurobehavioral activity. The animals were killed after 5 weeks lessoning for the estimation of lipidperoxidation, reduced glutathione content, activities of glutathione-S-transferase, glutathione reductase, GPX, SOD and CAT, catecholamine content, dopaminergic D2 receptor binding and tyrosine hydroxylase expression. *W. Somnifera* extract inverted all the parameters significantly in a dose-dependent manner49.

Clinical trial

Anti-ageing Effect

Double-blind clinical trial was carried out to study the effect of *W. Somnifera* on the prevention of ageing in 101 normal healthy males in 50-59 years age group. Root powder at a dose of 0.5 g was given orally three times a day for 1 year. Results showed statistically significant increase in Hb, RBC, hair melanin, and seated stature in treated group in comparison to placebo group. Decrease in serum cholesterol was more in treated group than in placebo group46.

Ashwagandha (W. somnifera) root powder supplementation on the vo2 max. and hemoglobin in hockey players

Thirty two male hockey players, with a mean age of 17.4 ± 1.7 years and BMI 20.9 ± 2.9 kg/m2 were undertaken for the study. Subjects were randomly allocated into two groups Group I (n=16): *W. somnifera* group (experimental group) were given 500 mg capsules of aqueous roots of Aswagandha two times daily for eight weeks and Group II (n=16): Placebo (control) group., received starch capsules. VO2 max. with 12 minute run test and hemoglobin (Hb) of both experimental and control groups were measured before and after the administration of *W. somnifera* and placebo respectively. A significant progress in the VO2max and hemoglobin was observed in experi-
mental group who received 500 mg capsules of aque-ous roots of *Aswagandha* twice daily for eight weeks\(^50\).

Anti-stress activity

RCT was conducted with 130 participants, out of which 98 completed the study. Participants were randomly allocated into extract group and placebo group. Stress levels were assessed on 0, 30 and 60 day using modified Hamilton anxiety scale. Biochemical and clinical variables were noted on 0 and 60 day. The extract dose at 125mg QD showed significantly decreased Hamilton score, serum cortisol, serum CRP, pulse rate and blood pressure\(^51\).

Management of Sarcopenia

The participants of the RCT within the age group of 55 and 74 years were given 500 mg *W. somnifera* (in capsule) twice daily for 3 months. It has shown a significant role in recovering muscle functioning. The changes in blood creatine kinase levels with the use of this herb imply a possible increase in muscle metabolism or a possible decline in muscle catabolism\(^52\).

DISCUSSION

Aswagandha is an ayurvedic medicine with potential therapeutic efficacy. It is the important ingredient of a variety of formulations prescribed for musculoskeletal disorders and for promoting the longevity and wellness of the individuals. All the synonyms of *Aswagandha* emphasize its importance in the usage for *rasayana karma*. Ayurvedic pharmacological properties are mentioned as *tikta, kashaya rasa, laghu guna, usna veerya, madhura vipaka*. *Aswagandha* is also known to possess *balya, brumhana, rasayana and vajeekarana karma*\(^18\). *Aswagandha* is prescribed in the treatment of various diseases such as *vatavyadhi*\(^26\), *swasa*\(^25\), *nidransa*\(^29\), *granthi, apachi*\(^15\). It is the ingredient of hundreds of formulations including *kashaya, choorna, arista, asava, taila*\(^31\). Modern pharmacological studies reveals that *aswagandha* possesses properties such as anti-inflammatory, anti-tumor, anti-stress, anti-oxidant, immunomodulatory, hepatoprotective, anti-parkinsonism, hemopoetic effects.

In this review, an attempt has been made to systematically explain the drug *Aswagandha* starting from its etymology and synonyms. Unlike other reviews on this drug, we have compiled the information on the classification (*vargheekarana*) of the drug in various *samhitas* and *nigantus*, opinions of their ayurvedic pharmacological properties (*Rasa panchaka*), therapeutic effects (*Amayikaprayoga*), different formulations such as *kashaya, ghruta, taila, choorna* containing *Aswagandha* as its ingredient. In addition to these, chemical constituents of different parts, and pharmacological review including the toxicity as well as clinical studies and in-vitro and in-vivo studies were also compiled.

CONCLUSION

From the review it was found that, the drug *Aswagandha* is found to possess immense therapeutic efficacy which can be utilized in the management of various disease conditions. This review will help the researchers to study the traditional claims and utilizing the different formulations of this drug in treating various disorders. *Aswagandha* has been explained as best among the drugs explained for *brumhana, balavardhana and sukrajanana*. The studies relating the assessment of pharmacodynamics of ayurvedic pharmacological actions of *Aswagandha* such as *brumhana, sukrala, balya* has to be conducted for explaining its mode of action in various clinical conditions.

REFERENCES

53. Auddy B, Hazra J, Mithra A. A standardized Withaniasomnifera extract significantly reduces the stress related parameters in the chronically stressed humans- A doule blind, randomized placebo controlled study. JANA 2008; Vol 1: 50-56.

Source of Support: Nil
Conflict Of Interest: None Declared