PHARMACOGNOSTICAL STUDY OF CHIRABILVA (HOLOPTLEA INTEGRIFOLIA PLANCH)

Surendra1, Poonam Sharma2, Sanjeev Kumar3, K N Dwivedi4

1Medical Officer Mirzapur, VNS, 2, 3Senior Resident & Ph.D. Scholar, Dept. of Dravyaguna, 4Professor, Dept. of Dravyaguna, I.M.S., B.H.U., Varanasi, Uttar Pradesh, India

ABSTRACT

Aim: To do the detailed pharmacognostical study of Chirabilva (Holoptelea integrifolia Planch.) stem. Methods: Stem samples of H. integrifolia were studied by macroscopic, microscopic, physicochemical, phytochemical, fluorescence analysis of powder of the plant and other methods for standardization recommended by WHO. Result: Macroscopically stem of Chirabilva is 6 to 10mm thick, slightly curved, outer surface rough, grey to brownish grey, with lenticels. In microscopic study it shows starch grains and prismatic calcium oxalate crystals, phloem fibre and stone cells. T.S. of stem shows cork and upper phelloderm region, stone cells in phelloderm, parenchyma cells with starch grains and crystal. Preliminary phytochemical screening showed the presence of triterpenoids, saponins, tannins and flavonoids. Physiochemical parameters such as loss on drying, swelling index, extractive values and ash values were also determined. Conclusions: The results of the study can serve as a valuable source of information and provide suitable standards for identification of this plant material in future investigations and applications. Keywords: Chirabilva, Macroscopic study, Microscopic study.

INTRODUCTION

Chirabilva consists of dried stem bark of Holoptelea integrifolia Planch. (Family - Ulmaceae); a large deciduous trees found throughout the greater parts of India up to an altitude of 660 meter, lower ranges of Himalaya, Saharanpur, Orissa, Chota Nagpur, Bihar, W. Bengal, hills of Deccan, eastern slopes of W. Ghats and NorthCircars. The selected drug Chirabilva possess Tikta, Kashaya rasa and have Pramehagha (antidiabetic) action, therefore drug seems to be rational for the treatment of Madhumeha (Diabetes mellitus). Preliminary phytochemical and pharmacognotical study comprises of macroscopic and microscopic study of drug, organoleptic tests, ash value, acid insoluble ash and the qualitative analysis of drug.

MATERIAL & METHOD

The trial drug Chirabilva was collected from the Ayurvedic garden, Department of Dravyaguna, IMS, BHU. Stem bark of the Chirabilva was dried in shade and cut into small pieces. The preliminary phytochemical studies were performed for testing the different chemical groups present in the drug. 10% (w/v) solution of extract was taken unless otherwise mentioned in the respective individual test. General screening of various extracts of the plant material was carried out for qualitative determination of the groups of organic compounds present in them.
(Trease and Evan, 1983). Microtome sections were taken, stained and mounted as usual and the cell content and cell wall structure were studied according to the method described by Sass (1940), Johnson (1940) and O’Brian et al (1964).

Powder characteristics:

Preliminary examination, behaviour of powder with different chemical reagents and microscopical examination was carried out (Kay, 1938).

Fluorescence analysis:

Fluorescence characteristics of powdered material were recorded under ultraviolet light as per the method mentioned by Kokaski (1958).

Physicochemical parameters:

The various physicochemical parameters such as total ash, moisture content (Loss on drying), water content, foreign organic matter, extractive values (Petroleum ether, chloroform, alcohol and water) have been studied as per WHO guidelines (WHO 2004).

RESULTS & DISCUSSION

Macroscopical characters:

Bark of Chirabilva

Drug occurs variable in length, 6 to 10 mm thick, slightly curved, outer surface rough, grey to brownish grey, with lenticels and inner surface yellowish brown, fibrous, smooth; fracture hard; odour not characteristic and taste slightly bitter.

Microscopical characters

<table>
<thead>
<tr>
<th>T. S. OF STEM BARK</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cork and upper phelloderm region</td>
<td>Cork cells</td>
</tr>
</tbody>
</table>
Stone cells | Parenchyma cells with starch grains and crystal | Medullary rays in between the phloem cells
---|---|---

POWDER MICROSCOPY

Starch grains and prismatic calcium oxalate crystals | Phloem fibre | Stone cell with fibre

Transverse section of stem bark shows wide zone of cork, 3 – 5 layers of phellogen and a wide zone of phelloderm; phloem occupied 1/3rd of the bark. Peripheral region of phelloderm shows patch of stone cells which are variable in shape, lignified and radiating canals. Groups of phloem fibres traversed by medullary rays; phloem fibres lignified having narrow lumen and septate and parenchyma cells contains starch grains and prismatic crystals of calcium oxalate.

Powder study shows scattered prismatic crystals of calcium oxalate, starch grains, stone cells and lignified phloem fibres.

Physico-chemical parameters of stem of *Holoptelea integrifolia* Planch

- Foreign matter: 2.0 %
- Moisture content: 4.31 %
- Total ash: 17.63 %
- Acid – insoluble ash: 2.05 %
- Sulphated ash w/w: 18.12 %
- Alcohol – soluble extractive: 5.6 %
- Water – soluble extractive: 12.3 %

Chemical test:

- Steroids: +ve
- Terpenoids: +ve
- Tannins: +ve
- Saponins: +ve
Fluorescence analysis:
[Chase & Pratt, 1949.,Kokaski, et al.,1958) with some modification]

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Treatment</th>
<th>Colour produced under ordinary light</th>
<th>Colour produced under UV - Long (366nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Drug as such</td>
<td>Dark brown</td>
<td>Brown</td>
</tr>
<tr>
<td>2.</td>
<td>Drug + Nitrocellulous</td>
<td>Orange</td>
<td>Light green</td>
</tr>
<tr>
<td>3.</td>
<td>Drug + Picric acid</td>
<td>Yellow</td>
<td>Brown</td>
</tr>
<tr>
<td>4.</td>
<td>Drug + HCl<sub>conc.</sub></td>
<td>Dark brown</td>
<td>Black</td>
</tr>
<tr>
<td>5.</td>
<td>Drug + H<sub>2</sub>SO<sub>4</sub><sub>conc.</sub></td>
<td>Black</td>
<td>Black</td>
</tr>
<tr>
<td>6.</td>
<td>Drug + HNO<sub>3</sub>(50%)</td>
<td>Orange</td>
<td>Green</td>
</tr>
<tr>
<td>7.</td>
<td>Drug + 1 N Na OH in Me OH</td>
<td>Light brown</td>
<td>Black</td>
</tr>
<tr>
<td>8.</td>
<td>Drug + 1 N Na OH in Me OH + Nitrocellulous</td>
<td>Lemon</td>
<td>Black</td>
</tr>
<tr>
<td>9.</td>
<td>Drug + NH<sub>4</sub>OH</td>
<td>Light brown</td>
<td>Black</td>
</tr>
<tr>
<td>10.</td>
<td>Drug + FeCl<sub>3</sub></td>
<td>Light brown</td>
<td>Black</td>
</tr>
<tr>
<td>11.</td>
<td>Drug + Acetic acid Glacial</td>
<td>Lemon</td>
<td>Black</td>
</tr>
<tr>
<td>12.</td>
<td>Drug + Sudan-III</td>
<td>Brick red</td>
<td>Dark brown</td>
</tr>
</tbody>
</table>

THIN LAYER CHROMATOGRAPHY
Alcoholic Extract (Soxhlet) - Visualization in UV 254 (Short wave length)
- Stationary phase - TLC Aluminium sheet silica gel 60 F 254 plates
- Rf in Iodine - 0.12, 0.24, 0.40, 0.50, 0.63, 0.68 and 0.74

Thin layer chromatography plate:

TLC results indicated 7 spots in alcoholic extract of bark at Rf 0.60.
Chirabilva is a very good drug for madhumeha (Diabetes mellitus), it has Tikta, Kashaya rasa which do the Stambhana (anti-secretory) of urine. In has terpenoids, sapo-
inins, steroids and tannins all these chemicals prevent diabetes.
CONCLUSION
From the foregoing observations it is seen that the drug occurs variable in length, 6 to 10 mm thick, slightly curved, outer surface rough, grey to brownish grey, with lenticels and inner surface yellowish brown, fibrous, smooth; fracture hard. Transverse section of stem bark shows wide zone of cork, 3 – 5 layers of phellogen and a wide zone of phelloderm; phloem occupied 1/3 rd of the bark. Peripheral region of phelloderm shows patch of stone cells which are variable in shape, lignified and radiating canals. Powder study shows scattered prismatic crystals of calcium oxalate, starch grains, stone cells and lignified phloem fibres. TLC results indicated 7 spots in alcoholic extract of bark at Rf 0.60. In chemical analysis it shows presence of terpenoids, saponins, steroids and tannins all these chemicals prevent diabetes. All these properties make it very much favourable for diabetes mellitus.

REFERENCES

CORRESPONDING AUTHOR
Dr. Surendra nath
Email:surendranath.md@gmail.com

Source of support: Nil
Conflict of interest: None Declared