IN VIVO EVALUATION OF HYPOGLYCEMIC ACTIVITY OF AN AYURVEDIC POLYHERBAL COMBINATION (PDBT)

Nakanekar A1 Waghmare P2 Tatke P2 Kohli K1

1 R. A. Podar Ayurvedic Medical College, Mumbai, India
2 C. U. Shah College of Pharmacy, S.N.D.T Women’s University, Mumbai, India

INTRODUCTION

According to the World Health Organisation estimates, India had 32 million diabetic subjects in the year 2000 and this number would increase to 80 million by the year 2030 (1). The International Diabetes Federation (IDF) also reported that the total number of diabetic subjects in India is 41 million in 2006 and that this would rise to 70 million by the year 2025 (2). It is quite evident from the above observations that diabetes has become a major health problem in India.

Currently, in the conventional modern system of medicine, oral hypoglycaemic drugs and/or insulin are used for the management of diabetes. Oral hypoglycemic agents although are effective in reducing the blood sugar levels, a significant percentage of patients do report several side effects like hypoglycaemia, weight gain, development of insulin resistance and cardiovascular complications. There is a new understanding of involvement of multiple factors in pathogenesis of diabetes mellitus that has highlighted the need of drugs which are multi targeted, safe, easily available, and are cheaper. Ayurvedic system of medicine offers great future in the treatment of diabetes mellitus. Ayurveda mentioned several plants for the management of Diabetes mellitus and PDBT capsules is made from a few of such medicinal plants. PDBT capsules contain water extracts of five medicinal plants in equal quantity such Zingiber officinale, Tinospora cordifolia, Pterocarpus marsupium, Gymnemama sylvestre and Momordica charantia. Previous studies prove their individual actions for glucose lowering activity as well as safety studies5,6,7 . Hence this study was undertaken for in vivo evaluation of hypoglycemic activity of a combination of such herbs which was named as PDBT capsules. Hypoglycemic activity was evaluated on alloxan induced diabetic rat model.

MATERIAL AND METHODS
Plant material *Zingiber officinale* (Rhizome), *Tinospora cordifolia* (stem), *Momordica Charantia* (fruit), *Gymnema Sylvestre* (leaves), *Pterocarpus marsupium* (bark) which are indigenous to India were collected from local market and identified by Dravyaguna Department of R.A.Podar Ayurved College, Worli, Mumbai. These herbs were shadow dried & sent to Amruta Herbals, Indore for Water extraction. The extraction was done with Soxhlet apparatus after pulverisation. The extract was evaporated to dryness under vacuum desiccators (15.5%w/w). After the standardisation of extracts as per API guidelines, PDBT capsules of 500mg each containing equal amount of each extract were prepared.

Animals- Wistar albino rats (8–10 weeks) of both sexes having weight range 180gm-210gm were obtained from the animal house of C.U.Shah College of pharmacy SNDT Campus, Juhu Tara road Santacruz (W) Mumbai. Before and during the experiment rats were fed with standard diet (Gold Moher, Lipton India Ltd. After randomization in to 4 groups before initiation of experiment the rats were acclimatized for period of 7 days under standard environmental conditions of temperature, relative humidity, and dark/light cycle. Animals described as fasting were deprived of food and water for 16 hours *ad libitum*. Some animals were used for induction of diabetes while some were kept aside as a normal control.

- Induction of Diabetes- Diabetes was induced by single i.p. of alloxan monohydrate (120 mg/kg).
- Non diabetic control rats received saline solution
- After 72 hours, the blood glucose levels were checked.
- Diabetic rats were considered with the blood glucose levels 200 - 260 mg/dl.

Grouping of animals with 6 animals in each group was done as follows-.

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Non Diabetic control- Normal rats receiving 0.05% Sodium CMC solution.</td>
</tr>
<tr>
<td>II</td>
<td>Diabetic control - Diabetic rats receiving vehicle (0.05% Sodium CMC).</td>
</tr>
<tr>
<td>III</td>
<td>Standard - Diabetic rats receiving Glibenclamide (10 mg/kg)</td>
</tr>
<tr>
<td>IV</td>
<td>Treatment group - Diabetic rats receiving PDBT capsules (100 mg/kg)</td>
</tr>
</tbody>
</table>

EVALUATION

Blood samples were collected at 0th, 7th and 14th day. Fasting blood glucose levels were estimated.

After the treatment period biochemical parameters like cholesterol, triglyceride, HDL, LDL, urea, creatinine, AST and ALT were also estimated on day 15. The blood glucose levels and body weight were estimated on the 0th day, 7th day and 14th day of the treatment. On the 15th day blood samples were collected from the overnight fasted animals from the retro orbital plexus for es-
Estimation of various biochemical parameters. The animals were sacrificed to obtain the vital organs (liver, kidney and pancreas) for histopathology examination.

Collection of Blood sample and Blood Glucose Determination: Blood samples were drawn from tail tip of rat on 0, 7 and 14 day. Blood sugar estimation done by “one touch electronic glucometer” using glucose test strips. Body weight was measured by electronic weighing machine. On day 14, blood was collected from retro-orbital plexus. From overnight fasted rats serum was separated and analysed for serum cholesterol (10), triglycerides by enzymatic DHBS colorimetric method. (11) Serum HDL (12), Serum LDL (13), Serum Creatinine (14), Serum Urea (15), and serum alkaline phosphatase were estimated by hydrolyzed phenol amino antipyrine method (16). The whole pancreas, liver and kidneys were removed after sacrificing the animal and were collected in 10% formalin solution and immediately processed by the paraffin technique. Sections of 5µ thickness were cut and stained haematoxyllin and eosin (H&E) for histo-pathological examination. Histo-pathological examination was done at Excel Pathological Laboratory, Mumbai, India.

Statistical Analysis: All the values of body weight, Fasting Blood Sugar and biochemical estimations were expressed as Mean ± standard error of mean (S.E.M) and analysed for ANOVA and post hoc Dunnet’s t-test. Differences between groups were considered significant at p<0.01 levels.

RESULTS

1) Effect on Blood Sugar Level

<table>
<thead>
<tr>
<th>Groups</th>
<th>Blood glucose levels (mg/dl)</th>
<th>% Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0th Day</td>
<td>7th Day</td>
</tr>
<tr>
<td>Non Diabetic Control</td>
<td>74.83 ± 0.70</td>
<td>74.33 ± 0.50</td>
</tr>
<tr>
<td>Diabetic Control</td>
<td>232.67 ± 3.11</td>
<td>248.67 ± 5.15</td>
</tr>
<tr>
<td>Diabetic Standard Control</td>
<td>235.66 ± 2.40</td>
<td>133.50 ± 2.19</td>
</tr>
<tr>
<td>PDBT capsules (100 mg/kg in divided doses)</td>
<td>233.83 ± 3.4</td>
<td>171.17 ± 4.97</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SEM, n = 6; n= Number animals per treatment; ** Significantly different from Control, p<0.01

2. Effect on Liver markers

<table>
<thead>
<tr>
<th>Groups</th>
<th>Parameters (U/L)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AST</td>
<td>ALT</td>
</tr>
<tr>
<td>Non Diabetic Control</td>
<td>48.65 ± 0.12</td>
<td>32.2 ± 0.19</td>
</tr>
<tr>
<td>Diabetic Control</td>
<td>121.52 ± 0.14</td>
<td>187.92 ± 0.24</td>
</tr>
</tbody>
</table>
Values are expressed as mean ± SEM, n = 6; n= Number animals per treatment; ** Significantly different from Control, p<0.01

3. Effect on Renal markers-

The levels of Blood Urea and Serum Creatinine on the 14th day were compared in between the groups. The pretreatment levels were not taken because of the ethical issues.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Parameters (U/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urea</td>
</tr>
<tr>
<td>Non Diabetic Control</td>
<td>16.14 ± 0.01</td>
</tr>
<tr>
<td>Diabetic Control</td>
<td>35.53 ± 0.15</td>
</tr>
<tr>
<td>Diabetic Standard Control</td>
<td>21.17 ± 0.12</td>
</tr>
<tr>
<td>PDBT capsules (100mg/kg in divided doses)</td>
<td>23.64 ± 0.12</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SEM, n = 6; n= Number animals per treatment; ** Significantly different from Control, p<0.01

4. Effect on lipid profile

The levels of different constituents of lipid profile on the 14th day were compared in between the groups. The pretreatment levels were not taken because of the ethical issues.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Parameters (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cholesterol</td>
</tr>
<tr>
<td>Non Diabetic Control</td>
<td>69.16 ± 0.79</td>
</tr>
<tr>
<td>Diabetic Control</td>
<td>141.83 ± 1.07</td>
</tr>
<tr>
<td>Diabetic Standard Control</td>
<td>80.167 ± 0.9</td>
</tr>
<tr>
<td>PDBT capsules (100mg/kg in divided doses)</td>
<td>89.5 ± 0.88</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SEM, n = 6; n= Number animals per treatment; ** Significantly different from Control, p<0.01

RESULTS OF HISTOPATHOLOGY

Pancreas:
DISCUSSION

Non diabetic control rats receiving saline were considered as normal & healthy, diabetic control rats showed what could have happened without treatment. Diabetic rats treated with Glibenclamide (10mg/kg) decreased BSL 235.66 ± 2.40 mg/dl to 96.00 ± 1.34mg/dl (60.33%). Diabetic rats treated with PDBT capsules formulation showed decreased blood glucose levels from 233.33± 3.4 mg/dl to 118.17 ± 5.03mg/dl at the end of 14th day of treatment indicating good hypoglycemic activity (49.46%).

PDBT treated group also showed decrease in Sr. Triglyceride & Sr. Cholesterol along with increase in HDL as compared to diabetic control group. Rats treated with PDBT capsules also showed statistically significant decrease (p<0.01) in AST and ALT levels as compared to Diabetic control
indicating hepatoprotective effect. Rats treated with PDBT capsules also showed statistically significant decrease (p<0.01) in Urea and Creatinine levels as compared to Diabetic control indicating nephroprotective effect.

• Interpretation of Histopathology results:

Pancreas:

Group I - Histology of the pancreas of Normal control group showed normal pancreatic islets pattern and exocrine pancreatic architecture. In the pancreas of normal control rats, many rounded and elongated islets were evenly distributed throughout the cytoplasm, with their nucleus lightly stained than the surrounding acinar cells.

Group II - Histopathology of pancreas of Diabetic rats showed diffuse degeneration of islet of langerhans

Group III - Only minor pathological features were identified in pancreas of the diabetic rats treated with glibenclamide.

Group IV - Degenerative changes are very few in PDBT Capsule treated rats.

Liver:

Group I - Histopathologically showed normal hepatic structure with hepatic lobule.

Group II - The histopathological examination of diabetic rats showed hepatocellular injury pronounced in loss of the normal architecture of the liver. Histopathology showed that sinusoidal spaces are dilated in diabetic rats with multifocal fatty degeneration.

Group III - Degenerative changes are very few in this group.

Group IV - PDBT Capsule treated rats showed minimal single cell necrosis and kuffer cell infiltration.

Kidney:

Group I - Examination of the kidney of the normal control rats revealed normal glomeruli with thin glomerular basement membranes, normal cellularity and patent capsular space were normal. No major detectable abnormalities were noted in the histopathological studies of kidney.

Group II - Histopathology showed that diffuse degeneration of tubular epithelium and multifocal area of hemorrhages in diabetic rats.

Group III - Minimal changes are seen in this group

Group IV - These changes are minimal in PDBT Capsule treated rats.

CONCLUSION

- Polyherbal combination under study (PDBT) showed statistically significant hypoglycemic and hypolipidemic activity in alloxan induced diabetic rats,
- Thus PDBT Capsule is a multi targeted, cheaper, herbal drug which is a promising candidate for consideration for the treatment of diabetes mellitus.

Acknowledgements: The authors are thankful to Excel pathological laboratory, India for their help in histopathological studies.

REFERENCES

3. McKeigue PM, Shah B, Marmot MG. Relation of centralobesity and insulin resistance with high diabetes prevalence
and cardiovascular risk in South Asians.
4. Charak samhita chikitsa sthan chapter 6
Chaukhamba publication-Ganga Sahay Pandey.
5. Balsubramanyam
K,ArasaratnamV,SeevaratnamS, et al. Hypoglycemic effect of Gymnema Syl-
togenic properties of Momordica ciranta extract:an experimental and clinical eval-
uation. Phytother Res.1993;7:285
7. Indian council for medical Research,Collaberating Center new
delhi.flexible dose open trial of vijaysar in cases of newly diagnosed Non insu-
8. B. P. Giordano, W. Thrash, L. Hollen-
baugh et al., “Performance of seven blood glucose testing systems at high
9. P. Roeschlaux, E. Bernt, and W. Gruber,
“Enzymatic determination of total cholesterol in serum,” Zeitschrift für klini-
10. P. H. Mueller, R. M. Schmuelling, and
H. M. Liebich, “A fully enzymatic triglyceride determination,” Journal of
Clinical Chemistry and Clinical Bio-
11. C. C. Allain, L. S. Poon, and C. S. G.
Chan, “Enzymatic determination of to-
tal serum cholesterol,” Clinical Chem-
12. W. T. Friedewald, R. I. Levy, and D. S.
Fredrickson, “Estimation of the con-
centration of low-density lipoprotein
cholesterol plasma, without use of the preparative ultracentrifuge,”Clinical
13. L. D. Bowers, “Kinetic serum creati-
nine assays I. The role of various factors in determining specificity,” Clinical
for the determination of serumalkaline
phosphatase. Use of Berthelot’s reac-
tion for the estimation of phenol released by enzymatic activity,” Igaku To
16. J. T. Litchfield and F. A. Wilcoxon,
“Simplified method of evaluating dose effect experiments,” Journal of Phar-
macology and Experimental Therapeu-
tics, vol. 96, pp. 99–133, 1949
CORRESPONDING AUTHOR
Dr. Nakanekar A
R. A. Podar Ayurvedic Medical College,
Mumbai, India
Email: amitnakanekar@gmail.com
Source of support: Nil
Conflict of interest: None Declared